Как работает мультивибратор схемаМультивибратор это самый простой генератор импульсов, работающий в режиме автогенерации колебаний то есть при подачи напряжения на схему сам начинает генерировать импульсы.
Мультивибраторы устройства аналого-импульсной электроники и позволяют простейшим методом сформировать синхронизированные тактовые импульсные последовательности, а также дают возможность расширить длительность коротких импульсов, сгенерировать их требуемой длительности, задавать различные интервалы времени, создавать петли фазовой автоподстройки частоты. ![]()
Простейшая схема представлена на рисунке ниже: ![]() мультивибратор схема на транзисторах Причем емкости конденсаторов C1, C2 всегда подбираются максимально одинаковыми, а номинал базовых сопротивления R2, R3 должен быть выше чем коллекторные. Это важное условие для правильной работы МВ Как же все таки работает мультивибратор на транзисторах, итак: при включении питания начинают заряжаться емкости C1, C2. Первый конденсатор по цепочки R1- C1- переход БЭ второго биполярного транзистора корпус. Вторая емкость зарядится по цепи R4 - C2 - переход БЭ первого транзистора - корпус. Так как на транзисторах имеется базовый ток, то они почти открываются. Но так как двух одинаковых транзисторов не бывает, какой то из них откроется чуть раньше своего коллеги. Предположим, у нас раньше откроется первый транзистор. Открывшись он разрядит емкость С1. Причем разряжаться она будет в обратной полярности, закрывая второй транзистор. Но первый находиться в открытом состоянии только на момент, пока конденсатор С2 не зарядится до уровня напряжения питания. По окончании процесса зарядки С2, Q1 запирается. Но к этому времени С1 почти разряжен. А это значит, что через него потечет ток, открывающий второй транзистор, который, разрядит емкость С2 и будет оставаться в открытом состоянии до повторной зарядки первого конденсатора. И так из цикла в цикл, пока не отключим питание от схемы. Как легко заметить время переключения здесь определяется номиналом емкости конденсаторов. Кстати и сопротивление базовых сопротивлений R1, R3 здесь тоже вносит определенный фактор. Вернемся в первоначальное состояние, когда первый транзистор у нас открыт. В этот момент емкость С1 у нас уже не только успеет разрядится, но и начнет заряжаться в обратной полярности по цепи R2- С1- коллектор-эммитер открытого Q1. Но сопротивление у R2 достаточно большое и C1 не успевает зарядиться до уровня источника питания, но зато при запирании Q1 она разрядится через базовую цепочку Q2, помогая ему скорее открыться. Это же сопротивление увеличивает и время зарядки первого конденсатора C1. А вот коллекторные сопротивления R1, R4 являются нагрузкой и на частоту генерации импульсов особого влияния не оказывают. В качестве практического ознакомления предлагаю собрать схему новогодней гирлянды на мультивибраторах, в той же статье рассмотрена и конструкция на трех транзисторах. ![]() мультивибратор схема на транзисторах в конструкции новогодней мигалки
Разберемся с работой несимметричного мультивибратора на двух транзисторах на примере простой схемы радиолюбительской самоделки издающей звук подскакивающего металлического шарика. Работает схема следующим образом: по мере разряда емкости С1 громкость ударов снижается. От номинала С1 зависит общая продолжительность звучания, а конденсатор С2 задает длительность пауз. Транзисторы могут быть абсолютно любые p-n-p типа. ![]()
Существуют два типа мультивибраторов отечественного микро исполнения - автоколебательные (ГГ) и ждущие (АГ). Автоколебательные генерируют периодическую последовательность импульсов прямоугольной формы. Их длительность и период следования задаются параметрами внешних элементов сопротивлений и емкостей или уровнем управляющего напряжения. Отечественными микросхемами автоколебательных МВ, например являются 530ГГ1, К531ГГ1, КМ555ГГ2 более подробную информацию по ним и многим другим вы найдете в справочниках по микросхемам, например Якубовский С. В. Цифровые и аналоговые интегральные микросхемы или ИМС и их зарубежные аналоги. Справочник в 12 томах под редакцией Нефедова Для ждущих МВ длительность генерируемого импульса также задается характеристиками навесных радиокомпонентов, а период следования импульсов задается периодом следования импульсов запуска, поступающих на отдельный вход. Примеры: К155АГ1 содержит один ждущий мультивибратор, формирующий одиночные импульсы прямоугольной формы с хорошей стабильностью длительности; 133АГ3, К155АГ3, 533АГ3, КМ555АГ3, КР1533АГ3 содержит два ждущих МВ, формирующих одиночные импульсы напряжения прямоугольной формы с хорошей стабильностью; 533АГ4, КМ555АГ4 два ждущих МВ, формирующих одиночные импульсы напряжения прямоугольной формы.
Очень часто в радиолюбительской практике предпочитают не специализированные микросхемы, а собирают его на логических элементах. Самая простая схема мультивибратора на логических элементах И-НЕ показана на рисунке ниже. Она имеет два состояния: в одном состоянии DD1.1 заперт, а DD1.2 открыт, в другом — все обстоит противоположным образом. ![]() Например, если DD1.1 закрыт, DD1.2 открыт, тогда емкость С2 заряжается выходным током DD1.1, идущим через сопротивление R2. Напряжение на входе DD1.2 положительно. Оно поддерживает DD1.2 в открытом состоянии. По мере заряда емкости С2 снижается ток заряда и падает напряжение на R2. В момент достижения порогового уровня начинает запираться DD1.2 и возрастать его потенциал на выходе. Рост этого напряжения передается через С1 на выход DD1.1, последний окрывается, и развивается обратный процесс, завершающийся полным запиранием DD1.2 и отпиранием DD1.1 — переходом устройства во второе неустойчивое состояние. Теперь будет заряжаться С1 через R1 и выходное сопротивление компонента микросхемы DD1.2, а С2 — через DD1.1. Таким образом наблюдаем типовой автоколебательный процесс. Еще одна из простых схем, которую можно собрать на логических элементах это генератор импульсов прямоугольной формы. Причем такой генератор будет работать в режиме автогенерации, аналогично транзисторному. На рисунке ниже представлен генератор, построенного на одной логической цифровой отесественной микросборке К155ЛА3 ![]() мультивибратор схема на К155ЛА3 Практический пример такой реализации можно посмотреть на странице занимательные схемы электроники в конструкции вызывного устройства.
Рассмотрен практический пример реализации работы ждущего МВ на триггере в конструкции оптического выключателя освещения на ИК лучах. |
![]() |