Терморегулятор своими руками для погребаРассмотрена простая конструкция терморегулятора изготовленого своими руками для поддержания требуемой температуры внутри погреба при хранении овощей в зимнее время года. Питание схемы осуществляется от стандартного сетевого напряжения 220 вольт.
Эту конструкцию проще всего собрать своими руками, в роли температурного датчика используется цифровой модуль DS18B20 с диапазоном измерения от -55 до 125 °С. Самодельное устройство имеет всего две кнопки управления «+» и «-» для настройки требуемых градусов, шаг настройки 0,5 °С. Arduino управляет работой модуля DS18B20 c гистерезисом в 0,5 °С. Если в течении трех секунд не будет регулирования градусов, дисплей покажет текущую температуру. Значение которой сохраняется в энергонезависимой памяти. Скетч для программирования платы Arduino можно взять здесь, схема соединения показана на рисунке ниже. Печатка не изготавливалась, т.к использовал для сборки макетную плату. Терморегулятор на MAX6675 и контроллере ArduinoС помощью микросхемы MAX6675 можно измерить ТЭДС (термоэлектродвижущую силу) термопары типа К, результат измерения выводится в градусах Фаренгейта и Цельсия
Рассмотрим две самодельных конструкции, одна прототип (верхняя на рисунке), подсмотрена в журнале моделист конструктор и ее модернизированный вариант, чуть ниже Терморегулятор своими руками схема В модернизированном варианте, на сопротивлениях R1- RЗ выполнен делитель напряжения, Вольты идущие через него стабилизируется с помощью стабилитрона Д814Б. Сопротивление R3 это 10-килоомный терморезистор КМТ-12, его можно заменить на ММТ-1, ММТ-9, ММТ-12 или аналогичные. В верхнем плече делителя - два сопротивления: переменный номиналом 1,5-2,2 кОм с линейной характеристикой, его ручка настройки выносится на лицевую панель с градуировкой коррекция и подстроечный R2 сопротивлением 1,5-47 кОм, для грубой настройки. Четкая зависимость сопротивления терморезистора от температуры позволяет применить его в качестве датчика, изменяющего уровень напряжение на входах 1 и 2 DD1.1 К561ЛА7. Ручками настройки сопротивлений R1 и R2 выставляется уровень срабатывания цифровой логики. Емкость С1 ликвидирует дребезг DD1 в момент переключения. Благодаря сопротивлениям R5 и R6 выход К561ЛА7 гальванически увязывается с транзисторным ключом на КТ972, в коллекторную цепь которого включено реле К1. Оно, через свои фронтовые контакты, запускает магнитный пускатель К2, включающий нагрузку обычный бытовой нагреватель с встроенным вентилятором мощностью от 1,5 кВт и более. Самодельный блок питания можно использовать любой. Главное, подать на диодный мост необходимые 12 В. Терморегулятор своими руками конструкция печатной платы
Печатная плата изготавливается из одностороннего фольгированного стеклотекстолита размерами 70x70x2 мм и вместе с магнитным пускателем размещается в корпусе подходящих размеров. Терморезистор сделан выносным. Печатную плату проще всего сделать по радиолюбительской технологии методом ЛУТ. Настройка, осуществляется с помощью сопротивлений R1 и R2 которыми задают температуру, требуемую для поддержания в погребе или овоще-хранилище. Первоначально, установив их ручки в среднее положение и поместив датчик в среду с необходимой температурой, при медленном вращении ручки определяют такой угол поворота R2, при котором срабатывает реле.
Принцип работы схемы предельно прост: если на управляющем электроде TL431 напряжение вые 2,5 В (задается внутренним опорным напряжением) микросборка, открыта и через нагрузку течет ток. Если же уровень опорного напряжения чуть снижается TL431 закрывается и отсоединяет нагрузку. При этом микросхема-стабилитрон применяется в роли компаратора, но с одним входом. Такое применение микросборки позволяет максимально упростить конструкцию и уменьшить количество радиокомпонентов. Напряжение на управляющем электроде формируется с помощью делителя на резисторах R1, R2 и R4. В качестве сопротивления R4 взят терморезистор с отрицательным ТКС, т.е с повышением температуры его сопротивление снижается. Если напряжение на первом пине стабилитрона более 2,5В он открыт, реле включено, симистор D2 включает нагрузку. С повышением температуры номинал сопротивления терморезистора снижается, напряжение падает ниже 2,5В – реле отключается вместе с нагрузкой. С помощью сопротивления R1 осуществляется настройка температуры срабатывания терморегулятора. Реле можно взять любое на 12 вольт, например РЭС-55А.
Конструкция небольшая и состоит всего из двух блоков- измерительного на базе компаратора на ОУ 554СА3 и коммутатора нагрузки до 1000 Вт построенного на регуляторе мощности КР1182ПМ1. На третий прямой вход ОУ поступает постоянное напряжение с делителя напряжения состоящего из сопротивлений R3 и R4. На четвертый инверсный вход подается напряжение с другого делителя на сопротивлении R1 и терморезистор ММТ-4 R2. Терморегулятор своими руками схема на КР1182ПМ1 Устройство должно быть настроена так, что при понижение температуры в погребе до трех градусов Цельсия то из-за уменьшения сопротивления терморезистора ММТ-4 произойдет разбалансировка напряжения на выходе компаратора и установится логический ноль и сработает реле, которое своими контактами коммутирует фазовый регулятор на микросхеме КР1182ПМ1. Подстроечное сопротивление R4 используется для точной настройки требуемых значений температурного режима. Откалибровать терморегулятор для погреба можно используя обычный ртутный термометр. Реле обязательно должно быть герконовым с небольшим током потребления. Более мощное реле применять нельзя, т.к реле подключено напрямую к выходу ОУ ток нагрузки должен быть не более 50 мА.
Главное достоинство данной схемы это приемлемая точность, без какой либо калибровки, при максимальной упращенной конструкции. Главным компонентом схемы терморегулятора является микроконтроллер PIC12F629 фирмы Microchip и датчика температуры DS18B20 фирмы Dallas. Эти вполне себе современные компоненты способны принимать и передавать информацию в цифровом коде по одной шине, используя 1-Wire интерфейс. Температурный диапазон хранится в EEPROM микроконтроллера PIC12F629. Его можно задавать с разрешением в 1 градус, от - 55 до +125. После включения устройства, микроконтроллер включает реле, и начинает светиться светодиод HL1, говоря о работоспособности устройства. Затем сравнивается значение текущей температуры с датчика DS18B20 и установленной, и если текущая температура будетниже нижнего порога, то реле остается включенным, как и нагреватель подсоединенный через фронтовые контакты. Далее микроконтроллер сравнивает температуру в погребе с заданным верхним значением. Как только этот предел достигнут, микроконтроллер формирует код и отключает реле, до тех пор, пока микроконтроллер не обнаружит понижение температуры ниже нижнего установленного предела. При программировании микроконтроллера PIC потребуется установить значение верхнего (адрес 0×01) и нижнего (0×00) порога температуры. Саму прошивку можно скачать по зеленой ссылочке, чуть выше. |
|