Терморегулятор на микроконтроллере схема

Основа первой схемы терморегулятора - микроконтроллер PIC16F84A с датчиком температуры DS1621 обладающим интерфейс l2C. В момент включения питания, микроконтроллер сначала инициализирует внутренние регистры температурного датчика, а затем проводит его настройку. Терморегулятор на микроконтроллере во второй схеме выполнен уже на PIC16F628 с датчиком DS1820 и управляет подключенной нагрузкой с помощью контактов реле
Радиоконструкторы на любой вкус

Терморегулятор на микроконтроллере PIC16F628 с датчиком температуры DS1820

Особенность конструкции: Индикация на ЖК - дисплей текущей температуры. Возможность управления нагревательным элементом или другим мощным внешним прибором. Возможность работы в режиме термостата.

Сердцем схемы является микроконтроллер PIC16F628, поддерживающий постоянный обмен информацией с цифровым термометром DS1820 по протоколу 1-Wire, а также обрабатывает и анализирует эти данные и выводит ее на ЖК дисплей. В качестве дисплея используется модуль 16х2 MT16S2H фирмы «МЭЛТ»

Блок питания можно собрать самостоятельно на стабилизированное напряжение на 5 вольт. Чтоб узнать как запрограммировать датчик температуры DS1820 кликните мышкой на картинку выше с надписью терморегулятор схемы

Терморегулятор на микроконтроллере PIC16f84 для теплого пола с датчиком температуры DS1621

Устройство работает по интерфейсу l2C. В момент подачи питания, микроконтроллер сначала инициализирует внутренние регистры температурного датчика, а затем проводит его настройку.

Как только инициализация заканчивается, микроконтроллер считывает из энергонезависимой памяти заданные уровни температуры. Затем терморегулятор осуществляет циклический опрос температурного датчика и выводит значение температуры на светодиодный индикатор. Для отображения десятых долей температуры, десятичная точка у индикатора HG2 соединена через сопротивление R14 на общий провод. В конце сравнения заданного и фактического значений температуры программа формирует низкий или высокий уровень сигнала на второй выход RА3 микроконтроллера PIC16f84. Это сигнал и является управляющим для включения терморегулятора.

Требуемую температуру в память микроконтроллера PIC16F84A можно вносить с шагом в пол градуса Цельсия. Выбор нужного значения температуры осуществляется тумблерами SB1 и SB2, а ее запись в энергонезависимую память осуществляется нажатием и удержанием более 1 секунды кнопки SB3.

Температурный датчик DS1621 располагаем в подходящего по диаметру трубки и вблизи с нагревательным кабелем теплых полов. Соединение датчика и терморегулятора осуществляем 4-х проводным кабелем длинной до двух метров. Прошивку к микроконтроллеру скачивайте по ссылке чуть выше, а о программирование PIC микроконтроллеров читаем тут.

Непосредственное подключение терморегулятора можно сделать практически через любую выше рассмотренную схему, а можно использовать вот такой вариант:

Оптическая развязка цепей между термостатом и нагревательными элементами теплых полов выполнена на оптосимисторе MOC3041.

Термостат для бойлера на микроконтроллере PIC16F628A

Величину температурного гистерезиса можно задавать в интервале от 1 до 10 градусов. Температурный максимум, поддерживаемый регулятором, около 70 градусов. При первом включении схемы в энергонезависимую память МК записывается гистерезис включения и выключения термостата - 5 градусов и поддерживаемая температура -40 градусов. После подачи питания должны загореться все сегменты цифрового индикатора кроме точек. Для задания температуры используются кнопки SB1 и SB2. SB1 — уменьшение, SB2 — увеличение. Гистерезис задается этими же кнопками, но при нажатой SB3. Функциональность кнопок SB1 и SB2 в данном случае такая же. Если задать температуру в сорок градусов, а гистерезис десять, то при сорока градусах будут срабатывать термонагреватели, а при 40+10 = 50 они отключатся.

Схема термостата для бойлера на микроконтроллере PIC16F628A

Номиналы сопротивлений резисторов R8,R9,R10 могут лежать в интервале от 4,7кОм до 10кОм. А вот номиналы сопротивлений R5 и R6 — критичны и должны быть такими, чтобы общий ток, идущий через HL2 и оптрон U1, был не выше 25 миллиампер. Можно вообще HL2 выкинуть из схемы, достаточно и лампы HL1, и тем самым снизить нагрузку на выходе МК.

Блок питания лучше взять трансформаторный. , т.к он более устойчив к сетевым помехам, которые иногда приводят к зависанию прошивки микроконтроллера. Напряжение на входе стабилизатора DA1 должно обеспечивать необходимый уровенб для питания микроконтроллера. Прошивку, рисунок печатной платы и более качественный вариант принципиальной схемы можно забрать по ссылке выше.

Термостат для бани или парилки

Основа схемы — уже знакомый микроконтроллер PIC16F628A. В роли датчика температуры применен DS18B20, способный правильно функционировать до +125 градусов. Показания установленной и реальной температуры индицируется четырехразрядным семисегментным светодиодным индикатором с общим анодом.

Термостат на микроконтроллере PIC16f84 для бани

Задание нужной температуры осуществляется при помощи двух кнопок SB1 и SB2. Коммутация нагрузки происходит с помощью оптотиристоров ТО125-12,5-6. При помощи сопротивления R1 задается ток протекающий через светодиоды оптронов, номиналом около 50мА. Оптотиристоры необходимо разместить на радиаторах, согнутых из полоски алюминия площадью 100см2. В роли сетевого трансформатора можно использовать любой, обеспечивающий на выходе вторички напряжение 6В при токе нагрузки — от 100 мА. Прошивку к МК и чертеж печатной платы забираем по ссылке выше

Термостат для поддержания температуры и влажности

Основой схемы является, уже знакомый нам микроконтроллер PIC16F628A. Применение ЖК дисплея позволило освободить несколько выводов МК, что существенно упростило согласование по времени считывания данных с датчика температуры и влажности и вывода результирующей информации на экран. В этой схеме используется универсальный датчик температуры и влажности DHT22.

Схема термостата для поддержания необходимой температуры и влажности

Кроме того, конструкция состоит из девяти резисторов, оного конденсатора и пяти управляющих кнопок.

SB1 — увеличение задаваемой температуры.
SB2 — уменьшение ---/---/---
При нажатой SB3: SB1 — увеличение задаваемого гистерезиса, SB2 — соответственно уменьшение
SB4 — обеспечивает уменьшение устанавливаемой влажности, SB5 — увеличение

Максимальная температура, которую можно задать в термостате, 42 градуса. Минимальная - 25,7. Интервал изменения петли гистерезиса составляет от 0,1 до 0,9 градуса Цельсия. Влажность можно регулировать в диапазоне от 0,1% до 99,9%. При первом включении МК, в его энергонезависимую память будут сохранены следующие величины: температура — 37,5°C, гистерезис — 0,5°С, влажность — 50%. Далее, в память, будут внесены уже необходимые вам параметры. Скачать прошивку и более качественный вариант схемы можно по ссылке выше.