TL431 DatasheetМикросхема TL431 - это программируемый стабилитрон. Используется в роли источника опорного напряжения и блока питания для низко потребляющих схем. Выпускается несколькими производителями и в разных корпусах.
Простота использования во многие схемы и хорошие параметры сделали регулируемый стабилитрон TL431 очень популярной микросборкой. С несколькими дополнительными резисторами и конденсаторами, он может обеспечить рабочее напряжение в интервале от 2,5 до 36 В, при стабилизирующем токе от 1 до 100 мА. Для получения больших значений стабилизации на выход схемы добавляют мощные транзисторы. ![]() Здесь вы сможете скачать DataSheet на популярный регулируемый стабилитрон TL431, а также посмотреть его подробные параметры и технические характеристики, в удобном формате PDF. Был разработан фирмой Texas Instruments еще в прошлом веке 1977 году. С тех пор он несколько модернизировался и до сих пор очень часто применяется в схемах импульсных блоков питания, где выполняет роль источника опорного напряжения. Оно просто отличный вариант замены диодов Зенера, в различных электронных решениях. Аналоги:Отечественный вариант 142ЕН19 и зарубежные наиболее близкие по параметрам APL1431, HA17431A, IR9431N, KIA431
![]() Цоколевка зависит от корпуса регулируемого стабилитрона. Из datasheet удалось получить информацию о пяти разновидностях корпусного исполнения: для установки в отверстия: ТО-92, SOT-23, SOT-25, SOT-89 и SOP-8. У них всего 3 вывода, с назначением: 1 – управляющий контакт; 2 – анод; 3- катод. Металлических выводов у других исполнений несколько больше, но они либо не задейфствованы, либо запараллелены с другими.
выходное напряжение в интервале от 2.5 до 36 В
- рабочий ток от 1 до 100 мА - выходное сопротивление 0.2 Ом - точность 0.5%, 1% и 2% В рабочих условиях рекомендуемыми значениями использования регулируемого стабилитрона являются: входное опорное напряжение VREF не выше 36 Воль; Ток катода IKA лежит в интервале от 1 до 100 мА; соблюдение температурных режимов использования. Стоит учитывать, что при IKA меньше 5 мА данный радиокомпонент может работать нестабильно. Ниже в таблице приводятся электрические параметры из datasheet. ![]()
Микросборка имеет три вывода (даже когда встречается в шести выводном корпусе). Два как у обычного полупроводникового стабилитрона - анод и катод. И вывод опорного напряжения, который подсоединяется к катоду или средней точке делителя напряжения. Самая простая схема включения требует всего одно сопротивление и позволяет получать опорное напряжение на выходе 2.5 В. ![]() В классической схеме включения добавляются еще два сопротивления, зато в этом случае можно получить на выходе произвольное напряжение ![]()
Ее нельзя проверить с помощью мультиметра, так как это не простой стабилитрон, а интегральная микросборка. Сопротивления между его пинами у разных производителей существенно варьируется. Поэтому, для того чтобы проверить этот регулируемый стабилитрон потребуется собрать следующую схему. ![]() Для проверки по первой схеме, на вход подают 12 Вольт. Если микросхема исправна, то на выходе должен установиться уровень 4.9-5.0 В, а при замыкании S1 – 2.5 В. Во второй схеме с индикаторным светодиодом. При изменении R2, на управляющем выводе установится 2.5 В. Индикатор загорается, это говорит о том что, ТЛ431 исправна.
Необходимый уровень напряжения, на управляющем выводе ТЛ431, задается делителем Rl, R2 и терморезисторе с отрицательным ТКС R3. ![]() Если на управляющем выводе напряжение выше уровня в2,5В, регулируемый стабилитрон пропускает ток и включает реле, контакты которого коммутирует управляющий вывод симистора и подсоединяют нагрузку. С ростом температуры, номинал сопротивления термистора и потенциал на управляющем выводе микросхемы падает ниже 2,5В, реле размыкает свои контакты и отключает обогреватель. С помощью R1 регулируем уровень требуемой температуры, для включения обогревателя.
![]()
![]() Зарядное устройство для литий-ионных аккумуляторов имеет светодиодный индикатор говорящий о процессе зарядки батареи. В зависимости от уровня тока заряда меняется интенсивность свечения светодиода. Если использовать smd компоненты печатная плата получится достаточно компактной. ![]()
![]() Микросхема поддерживает на резисторе R2 фиксированный потенциал 2.5 В, поэтому ток через это сопротивление всегда будет равен 2.5/R2. А если не учитывать ток базы, то можно сказать, что IRн = IR2. И чем больше будет коэффициент усиления VT1, тем больше эти токи будут совпадать. R1 обеспечивает минимальный рабочий ток микросборки - 1 мА. Ниже, в качестве радиолюбительского практического примера, показана схема токово стабилизатора на ТЛ431 в светодиодной лампе на 14 Вт с пульсациями < 0,5%. ![]() Резистор R3 предназначен для ограничения импульса зарядки емкости при подачи питания. Ток протекающий через нагрузку задается сопротивлением R2. В роли нагрузки Rн в схеме выступают 90 белых чип-светодиодов LED2835. Максимальная мощность при I=60 мА составляет 0.2 Вт (24Lm), Uпадения - 3.2 В. Для увеличение срока службы мощность светодиодов занижена, суммарная мощность всех их равна 14 Вт. |
![]() |