Диод Шоттки принцип работыДиод Шоттки еще одна разновидность типичного полупроводникового диода, его отличительная особенность это малое падение напряжения при прямом включении. Название свое он получил в честь немецкого физика изобретателя Вальтера Шоттки. В этих диодах в роли потенциального барьера применяется переход металл-полупроводник, а не p-n переход. Допустимое обратное напряжение диодов Шоттки обычно около 1200 вольт, например CSD05120 и его аналоги, на практике они используются в низковольтных цепях при обратном напряжении до нескольких десятков вольт.
На принципиальных схемах они обозначается почти как диод, мотри рисунок выше, но с небольшими графическими отличиями, кроме того достаточно часто попадаются сдвоенные диоды-шоттки.
Сдвоенный диод Шоттки – это два отдельных элемента собранных в одном общем корпусе причем выводы катодов или анодов этих компонентов объединены. Поэтому сдвоенный диод, обычно трех выводной. В импульсных и компьютерных блоках питания можно достаточно часто увидеть сдвоенные диоды Шоттки с общим катодом. Так как оба диода размещены в едином корпусе и собраны при одинаковом технологическом процессе, то их технические параметры почти идентичны. При подобном размещение в одном корпусе, во время работе они будут находится в одном температурном режиме, а это один из главный факторов увеличения надежность работы устройства в целом.
Достоинства Падение напряжения на диоде при прямом включении всего 0,2—0,4 вольт, в то время, как на типовых кремниевых диодах, этот параметр составляет 0,6—0,7 вольта. Такое низкое падение напряжения на полупроводнике, при прямом включении, свойственно только диодам Шоттки с обратным напряжением максимум десятки вольт, но в случае повышения уровня приложенного напряжения, падение напряжения на диоде Шоттки уже сопоставимо с кремниевым диодом, что достаточно сильно ограничивает использование диодов Шоттки в современной электронике. Теоретически любой диод Шоттки может обладает малой емкостью барьера. Отсутствие в явном виде классического p-n перехода позволяет существенно увеличить рабочую частоту прибора. Этот параметр нашел широкое применение в производстве интегральных микросхем, где диодами Шоттки шунтируют переходы транзисторов, используемых в роле логических элементов. В силовой электронике важен другой параметр диодов Шоттки, а именно, низкое время восстановления дает возможность использовать силовые выпрямители на частоты от сотни кГц и выше. Например, радиокомпонент MBR4015 (на 15 В и 40 А), используется для выпрямления ВЧ напряжения, а его время восстановления всего 10 кВ/мкс. Благодаря указанным выше положительным свойствам, выпрямители построенные на диодах Шоттки отличаются от выпрямителей на стандартных диодах более низким уровнем помех, поэтому их применяют в аналоговых вторичных блоках питания. Минусы В случае краткосрочного превышении допустимого уровня обратного напряжения диод Шоттки выходит из строя, в отличие от типовых кремниевых диодов, которые просто перейдут в режим обратимого пробоя, при условии, что рассеиваемая мощность кристалла не выше допустимых значений, а после снижения напряжения диод полностью восстанавливает свои характеристики. Диодам Шоттки свойственны более высокие значения обратных токов, увеличивающиеся с ростом температуры кристалла и в случае неудовлетворительных условий работы теплоотвода при работе с высокими токами приводят к тепловому пробою радиокомпонента.
Диоды Шоттки, как я уже отметил выше, активно используются в компьютерных блоках питания и импульсных стабилизаторах напряжения. Они используются в низковольтных и сильноточных частях схемы компьютерных ИБП на + 3,3 вольта и + 5,0 вольт. Чаще всего применяются сдвоенные диоды с общим катодом. Именно использование сдвоенных диодов считаться признаком высококачественного компьютерного блока питания. Сгоревший диод Шоттки одна из наиболее типовых неисправностей при ремонте импульсных блоках питания. У диода может быть два нерабочих состояния: электрический пробой и утечка на корпус. При любом из этих состояний ИБП блокируется благодаря встроенной схеме защиты. В случае электрического пробоя все вторичные напряжения в блоке питания отсутствуют. Во случае утечки вентилятор компьютерного БП может «подёргиваться» и на выходе могут появляются пульсации выходного напряжения, периодически пропадающие. То есть модуль защиты периодически срабатывает, но полной блокировки не происходит. Диоды Шоттки 100% сгорели, если радиатор, на котором они закреплены, очень теплый или сильно пованивает горелым от них. Следует сказать пару слов о том, что при ремонте ИБП после замены диодов, особенно с подозрением на утечку на корпус, следует прозвонить все силовые транзисторы работающие в ключевом режиме. А также в случае замены ключевых транзисторов проверка диодов является обязательной и строго необходимой.
Методика проверки диода Шоттки такая же, как и стандартного типового диода. Но и тут есть небольшие отличия. Очень трудно проверить диод этого типа уже впаянный в схему. Поэтому, сборку или отдельный элемент необходимо сначала демонтировать из схемы для проверки. Достаточно просто можно определить полностью пробитый элемент. На всех пределах измерения сопротивления, мультиметр отобразит в обе стороны бесконечно низкое сопротивление или короткое замыкание. Сложнее проверить с подозрением на утечку. Если проводить проверку типичным мультиметром, например DT-830 в режиме «диода» то мы увидим исправный компонент. Однако если сделать измерение в режиме омметра, то обратное сопротивление на пределе «20 кОм» определяется как бесконечно огромное (1). Если же элемент показывает какое-то сопротивление, например 5 кОм, то этот диод лучше считать подозрительный и заменить на точно работоспособный. Иногда лучше сразу заменить диодов Шоттки по шинам +3,3V и +5,0V в компьютерном ИБП.
Их иногда используют в приемники альфа и бета излучения (дозиметрах), фиксаторах нейтронного излучения, а кроме того на барьерных переходах Шоттки собирают панели солнечных батарей которые питают электроэнергией космические аппараты бороздящие просторы нашей необъятной вселенной . |
|