Составной транзистор дарлингтона работа и устройствоСоставной транзистор изобрел в 1953 году Сидни Дарлингтоном, он был выполнен из двух биполярных транзисторов на одном кристалле кремния и диффундированными n и p переходами. Поэтому новый транзистор получил имя изобретателя - транзистор дарлингтона.
При проектировании радиоэлектронных схем часто бывают ситуации, когда желательно иметь транзисторы с параметрами лучше тех, которые предлагают производители радиоэлементов. В некоторых случаях нам может потребоваться больший коэффициент усиления по току h21, в других большее значение входного сопротивления h11, а в третьих более низкое значение выходной проводимости h22. Для решения перечисленных проблем отлично подходит вариант использования электронного компонента о котором мы поговорим ниже.
Приведенная чуть ниже схема эквивалентна одиночному n-p-n полупроводнику. В данной схеме ток эмиттера VT1 является током базы VT2. Коллекторный ток составного транзистора определяется в основном током VT2. Это два отдельных биполярных транзистора на выполненные на одном кристалле и в одном корпусе. Там же и размещается нагрузочный резистор в цепи эмиттера первого биполярного транзистора. У транзистора Дарлингтона те же выводы, что и у стандартного биполярного транзистора – база, коллектор и эмиттер. Как видим из рисунка выше, стандартный составной транзистор это комбинация из нескольких транзисторов. В зависимости от уровня сложности и рассеиваемой мощности в составе транзистора Дарлингтона может быть и более двух. Основное плюсом составного транзистора является значительно больший коэффициент усиления по току h21, который можно приблизительно вычислить по формуле как произведение параметров h21 входящих в схему транзисторов. h21=h21vt1×h21vt2 (1)
Так если коэффициент усиления первого равен 120, а второго 60 то общий коэффициент усиления схемы Дарлингтона равен произведению этих величин - 7200. Но учитывайте, что параметр h21 достаточно сильно зависит от коллекторного тока. В случае когда базовый ток транзистора VT2 достаточно низок, коллекторного VT1 может не хватить для обеспечения нужного значения коэффициента усиления по току h21. Тогда увеличением h21 и, соответственно, снижением тока базы составного транзистора можно добиться роста тока коллектора VT1. Для этого между эмиттером и базой VT2 включают дополнительное сопротивление, как показано на схеме ниже. Вычислим элементы для схемы Дарлингтона, собранной, например на биполярных транзисторах BC846A, ток VT2 равен 1 мА. Тогда его ток базы определим из выражения: ikvt1=iбvt2=ikvt2 / h21vt2 = 1×10-3 A / 200 =5×10-6A
При таком малом токе в 5 мкА коэффициент h21 резко снижается и общий коэффициент может оказаться на порядок меньше расчетного. Увеличив ток коллектора первого транзистора при помощи добавочного резистора можно значительно выиграть в значении общего параметра h21. Так как напряжение на базе является константой (для типового кремниевого трех выводного полупроводника uбэ = 0,7 В), то сопротивление можно рассчитать по закону Ома: R = uбэvt2 / iэvt1 - iбvt2 = 0.7 Вольта / 0.1 mA - 0.005mA = 7кОм
При этом мы можем рассчитывать на коэффициент усиления по току до 40000. Именно по такой схеме построены многие супербетта транзисторы. Добавив дегтя упомяну, что данная схема Дарлингтона обладает таким существенным недочетом, как повышенное напряжение Uкэ. Если в обычных транзисторах напряжение составляет 0,2 В, то в составном транзисторе оно возрастает до уровня 0,9 В. Это связано с необходимостью открывать VT1, а для этого на его базу необходимо подать напряжение уровнем до 0,7 В (если при изготовлении полупроводника использовался кремний). В результате чтоб исключить упомянутый недостаток, в классическую схему внесли незначительные изменения и получили комплементарный транзистор Дарлингтона. Такой составной транзистор составлен из биполярных приборов, но уже разной проводимости: p-n-p и n-p-n. Российские, да и многие зарубежные радиолюбители такое соединение называют схемой Шиклаи, хотя эта схема называлась парадоксной парой. Типичными минусом составных транзисторов, ограничивающими их применение является невысокое быстродействие, поэтому они нашли широкое использование только в низкочастотных схемах. Они прекрасно работают в выходных каскадах мощных УНЧ, в схемах управления двигателями и устройствами автоматики, в схемах зажигания автомобилей. На принципиальных схемах составной транзистор обозначается как обычный биполярный. Хотя, редко, но используется такое условно графическое изображение составного транзистора на схеме.
Одной из самых распространенных считается интегральная сборка L293D - это четыре токовых усилителя в одном корпусе. Кроме того микросборку L293 можно определить как четыре транзисторных электронных ключа. Выходной каскад микросхемы состоит из комбинации схем Дарлингтона и Шиклаи. Кроме того уважение у радиолюбителей получили и специализированные микросборки на основе схемы Дарлингтона. Например ULN2003A. Эта интегральная схема по своей сути является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки отлично украшают радиолюбительские схемы и делают их более функциональными. ULN2004 Микросхема является семи канальным коммутатор мощных нагрузок на базе составных транзисторов Дарлингтона с открытым коллектором. Коммутаторы содержат защитные диоды, что позволяет коммутировать индуктивные нагрузки, например обмотку реле. Коммутатор ULN2004 необходим при сопряжения мощных нагрузок с микросхемами КМОП-логики.
Зарядный ток через батарею в зависимости от напряжения на ней (прикладываемого к Б-Э переходу VT1), регулируется транзистором VT1, коллекторным напряжением которого управляется индикатор заряда на светодиоде (по мере зарядки ток заряда уменьшается и светодиод постепенно гаснет) и мощный составной транзистор, содержащий VT2, VT3, VT4.
Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6.
В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора. |
|